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Abstract1 

In a school choice mechanism, school priorities are often based on student exam scores, by 

which student true ability may not be perfectly revealed. An ex-post fair matching mechanism (for 

example, Serial Dictatorship) can be undesirable in that it is not ex-ante fair: it may not match 

students with higher abilities to better schools, although it always matches students with higher 

scores to better schools. In this paper we consider a potential way of improving ex-ante fairness - a 

Boston mechanism with the requirement that students submit their preferences before the exam score 

is realized (the “pre-BOS mechanism”). This mechanism is more likely to achieve complete ex-ante 

fairness, in that students with higher ability are always matched with better schools. However, the 

other mechanisms (pre-/post-SD and post-BOS) can always implement stochastic ex-ante fairness 

(students with higher ability having higher probability of admission to better schools), while 

pre-BOS may not.  
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1. Introduction 

In a student-to-school matching problem, a socially desirable matching result is often described 

as matching students with higher abilities to better schools. At least three arguments for this property 

can be raised: First, it is a natural extension of the widely accepted fairness concept in school choice 

literature (alternatively, stability, or justified-envy-freeness) originating in Gale and Shapley (1962), 

by further incorporating the assumption that school priorities are based on student abilities;2 Second, 

it is likely to lead to higher aggregate productivity by achieving assortative matching (Becker, 1973, 

1974); Third, higher ability may originate from higher effort exerted prior to the application process, 

thus it would seem fair to reward those who incur greater efforts, with a larger choice set which 

includes better schools.3 We refer to such a matching outcome as ex-ante fair, or ability-based fair. 

In practice, however, students’ abilities are largely unobservable to schools and social planners. 

A matching mechanism attempting to achieve ex-ante fairness (or ability-based fairness) must find 

observable substitutes or proxies for students’ abilities. Exams are one of the most frequently used 

proxies in education systems throughout the world: Intuitively, students with higher academic exam 

scores are those students with higher academic abilities. If exam scores are a perfect proxy for 

abilities, a serial dictatorship (SD) mechanism can be used to reach ex-ante fair matching outcomes. 

However, the key problem is that exam scores are often imperfect measures of students’ intrinsic 

abilities. An ability-based fairness result might not be readily obtained under an exam- or 

score-based SD mechanism, which can only be what we refer to as ex-post fair, or score-based fair. 

We follow in the classic mechanism design tradition of analyzing solutions for incentive 

compatible allocation of scarce resources with desirable welfare properties, pioneered by John O. 

Ledyard and others (see for example, Groves and Ledyard, 1977; Ledyard and Palfrey, 1994; and 

other works). In this paper, we study matching mechanisms in terms of their chances of 

implementing ex-ante fairness as a welfare property. Our study centers on a new mechanism, the 

Boston mechanism with preference submission before an exam (pre-BOS). This new mechanism has 

two main features: First, it uses the Boston (BOS) mechanism to match students with schools. Unlike 

the SD mechanism, which orders students according to their scores first and then allows students to 

choose their preferred school by following this order, the BOS mechanism asks schools to first 

accept students who list them as their top choices, and scores are then considered within that 

interested group of students. Second, and importantly, the new mechanism introduces a further 

dimension in the mechanism design: It requires students to submit their preference list over schools 

before the exam is taken. We consider whether this new mechanism is able to achieve improvements 

in ability-based fairness, or ex-ante fairness, upon compared to other mechanisms, while still 

maintaining the convenience of a score-based admission rule.  

The intuition for this new mechanism, which we refer to as the “pre-BOS” mechanism, in 

potentially implementing more ex-ante fair outcomes is simple: Under this mechanism, students 

must submit their preferences based on their expected scores, which largely reflect their true abilities. 

Those who expect lower scores may tend to ‘give up’ ahead of time on applying for better or more 

                                                             
2 Schools may prefer more able students because they may establish a better reputation for schools, although this 

reputation may not come directly from high quality or quantity of education. 
3 In a different setting, which is commonly used in contest literature, effort may be endogenously determined and 

directly related to “performance”, while the notion of ability can be modeled as “types”, usually assumed to be 

exogenous. For such a framework applied to the school choice problem, see Hafalir, Hakimov, Kubler and Kurino 

(2015). 
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commonly favored schools in order to secure their slot in moderate schools. Slots in the better 

schools are thus reserved for students who expect higher scores, given that they have listed these 

schools as their first choices. This paper highlights the point that pre-exam preference submission 

may serve as a screening device, thus delivering the potential to improve social welfare in terms of 

the ex-ante fairness criterion. 

The school choice matching problem, also known as the student placement problem, was first 

introduced and carefully studied by Balinski and Sonmez (1999), inspired by the centralized, 

exam-based student placement practice in Turkey. The authors evaluate the so called multi-category 

serial dictatorship (MCSD) mechanism, in terms of fairness, efficiency and manipulability, and prove 

the equivalence between the MCSD mechanism and the Gale-Shapley school optimal mechanism. 

Given the shortcomings in MCSD, they further propose the Gale-Shapley student optimal 

mechanism as the “best” mechanism that Pareto dominates all other (ex-post) fair mechanisms. 

Based on Balinski and Sonmez (1999)’s work, we focus on the fairness criterion, while evaluating 

different mechanisms, and propose new notions of fairness when there exists an imperfect correlation 

between each student’s ability and score. 

The pre-BOS mechanism raises several interesting issues in the school choice matching 

literature. First, as has been widely discussed in literature, the Boston mechanism has been regarded 

as inferior to SD (or TTC) mechanism in the sense that it is not strategy-proof and it is also less 

likely to achieve a fair and efficient matching outcome (Abdulkadiroglu and Sonmez, 2003; Ergin 

and Sonmez, 2006). However, the literature has also begun to reconsider the Boston mechanism in 

light of models with private information and school priority uncertainty. For example, 

Abdulkadiroglu, Che and Yasuda (2011) find that if school priorities are determined by a single 

random tie-breaking rule, under a Bayesian equilibrium where students follow the same ordinal 

preference yet their cardinal preferences can be different and are private information, the matching 

outcome under the Boston mechanism ex- ante Pareto dominates the outcome under Deferred 

Acceptance (DA) mechanism. Our new mechanism introduces another source of school priority 

uncertainty: the uncertainty of student scores conditional on their abilities. Unlike their paper which 

focuses on ex- ante efficiency, we focus on ex- ante fairness, in other words, fairness based on 

students’ intrinsic abilities. Abdulkadiroglu, Che and Yasuda (2015) further consider the ex-ante 

efficiency properties of a variant of the deferred acceptance mechanism which allows students to 

express preference intensities that serve as a tie-breaker in schools’ admissions decisions. Their 

Choice-Augmented Deferred Acceptance (CADA) algorithm improves ex-ante efficiency through a 

signaling effect, similar to the screening effect of our “pre-BOS” in improving ex-ante fairness. 

Second, preference submission timing in the school choice matching problem is a new 

dimension of the student-to-school matching mechanism design which has not been fully explored in 

literature. Although various tie-breaking rules for school priorities and private information about 

student preferences have been discussed (Abdulkadiroglu, Pathak and Roth, 2009; Erdil and Ergin, 

2008; Pais and Pinter, 2008; Featherstone and Niederle, 2008; Abdulkadiroglu, Che and Yasuda, 

2011), this specific source of uncertainty based on the imperfect correlation between students’ scores 

and abilities has not yet been rigorously analyzed from the theoretical standpoint. Some empirical 

studies of the effect of preference submission timing have been implemented. Wu and Zhong (2014) 

test the effect of school choice mechanisms with preference submission timing using field data from 

a top Chinese university. Lien, Zheng and Zhong (2016) test the welfare properties of the Boston and 

Serial Dictatorship mechanisms under pre-exam and post-exam preference submission, using 
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laboratory experiments.4 

Our motivating example for this line of study is China’s college admissions system. As one of 

the world’s largest centralized school choice matching systems, it sets one of its most important 

objectives as matching “good” students to “good” colleges, an objective which has been widely 

accepted as a symbol of fairness for this system. However, it has also long been criticized as only 

judging a student by a single one-shot exam score: the College Entrance Exam (CEE) score.5 Also 

interestingly, pre-exam submission has been the dominant choice for a long time across various 

provinces since 1978, when the whole system was reestablished. Although post-exam submission 

emerged and prevailed in recent years in most provincial clearinghouses, there are still two major 

cities (e.g., Beijing and Shanghai) adhering to the “old” preference submission system. Meanwhile, 

another major policy change has also been made within this system, i.e., moving from an essentially 

BOS mechanism to a SD mechanism, or more precisely, a constrained SD mechanism in the sense 

that students are limited by the number of schools they can list on their applications. Both of these 

changes, from pre-exam to post-exam submission, and from BOS to SD mechanism, reinforce each 

other by putting more weight on this highly criticized CEE score. The welfare consequences of these 

policy changes are therefore highly debated and important issues to be studied. Our paper thus has 

real world policy relevance by considering the BOS and SD mechanisms interacted with preference 

submission timing (pre- or post-exam submission). 

Our theoretical analysis of the ex-ante fairness properties of pre-BOS reaches a mixed 

conclusion. Our results do lend some support to the pre-BOS mechanism, by showing that it is more 

likely to achieve complete ex-ante fairness than other mechanisms (post-BOS, pre-SD and post-SD). 

That is, pre-BOS is more likely to match students with higher ability to better schools with certainty. 

Particularly when we introduce the constrained pre-BOS, i.e., when we limit the number of schools 

that can be listed by students under pre-BOS, complete ex-ante fairness becomes much easier to 

implement. However, pre-BOS mechanism is vulnerable in its implementation of ex-ante fairness, 

because it is not strategy-proof and students’ equilibrium behaviors depend on their score 

distributions as well as their cardinal preferences. Under some conditions, pre-BOS cannot even 

implement stochastic ex-ante fairness in its equilibrium, while all the other mechanisms we consider 

here can always do so. Here, stochastic ex-ante fairness refers to the concept of students with higher 

abilities having higher probabilities of being matched with better schools. A policy recommendation 

is that a reform from pre-BOS to post-SD is reasonable given a sufficiently “precise” scoring system, 

yet keeping the “old” system can also be justifiable.6 

The remainder of the paper is organized as follows: Section 2 introduces the school choice 

problem, establishes our assumptions on school priorities and student preferences, and then describes 

each of the four mechanisms we analyze. Section 3 characterizes complete ex-ante fairness under all 

four mechanisms. Section 4 characterizes stochastic ex-ante fairness. Section 5 considers several 

extensions of our main results, including multiple slots at each school, weak preferences of students, 

and heterogeneous student preferences. Section 6 concludes. 

                                                             
4 See also Chen and Ledyard (2009) for a survey of mechanism design experiments. 
5 See Liu and Wu (2006) for a discussion of the CEE exam objectives. 
6  Here we do not discuss another possible advantage of pre-BOS, that is, ex-ante efficiency. By referring to 

Abdulkadiroglu, Che and Yasuda (2011), we can argue that pre-BOS can be more ex-ante efficient that other 

mechanisms under some conditions. For some preliminary work on this issue, see Wu and Zhong (2014), and Lien, 

Zheng and Zhong (2016). So as a whole, pre-BOS may still be an advantageous mechanism. 
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2. Problem and Mechanism 

2.1 The Problem 

We consider a problem where N  students will be matched to N  schools. We assume each 

school has only one slot. The student set is denoted as  : 1,...,iS s i N   and the school set is 

denoted as  : 1,...,jC c j N  . We assume that each student has the same strict preference 

ordering over schools.7 

Assumption 2.1 (Homogeneous strict preferences):  , , 1,..., , j s js S j j N j j c c 
       . 

Assumption 2.1 implies that all the students strictly prefer school 1c  to 2c , prefer 2c  to 3c , 

and so on. 

A matching outcome can be regarded as a function :f S C , where each student is allocated 

to a school. A matching mechanism is a procedure to determine the matching outcome. Specifically, 

each school announces in advance a priority rule for admitting students, students then report their 

preferences over schools (truthfully or non-truthfully), and a matching procedure (or algorithm) is 

used to match students with schools. 

Each school uses the same priority rule of admitting students: students’ realized exam scores, 

denoted by iy , 1,...,i N . Each school gives higher priority to students with higher exam scores. 

Furthermore, each student’s realized exam score ,min maxy y y   , where , ( , )min maxy y       is 

the score range of the exam, is a realization of an independent random variable iY , with a 

cumulative distribution function ( )i iy . Students have different intrinsic abilities so their score 

distributions are in general different. To map student ability to score distribution, we use the 

following definition. 

Definition 2.1 (Student ability):  , 1,...,i i N  , student is  has a higher ability than is   if 

( )i   first order stochastically dominates (FOSD) ( )i   . That is, (i) ,min maxy y y    , 

( ) ( )i iy y   and (ii) ,min maxy y y      such that ( ) ( )i iy y  
  . 

It is easy to see that any ordering of students’ abilities based on the definition above is transitive. 

However, note that such an ordering may not necessarily be complete, since it is possible that in 

theory there exist  , 1,...,i i N  such that neither ( )i   FOSD ( )i    nor ( )i    FOSD ( )i  . 

Since our main interest lies in the fairness concern when students have different abilities, it is 

reasonable for us to narrow down our focus to the case where the ordering is both complete and 

transitive throughout the paper. It is also worth noting that we assume that the ranking of students’ 

abilities and the distributions of students’ scores are commonly known to all students, and after the 

                                                             
7 We will discuss the relaxations of those assumptions (i.e., single slot of schools, homogeneous student preferences) in 

Section 5. 
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exam the realized scores will also become common knowledge.8 

Without loss of generality,  , 1,...,i i N  , we assume that i i  means that is  has a higher 

ability than 
is  . The first-order stochastic dominance immediately implies that i iy y   for any 

i i , where  y E Y  is a student’s expected score.  

We denote  ,iR s S  as the score ranking of student is  in a subset of students S  , where 

S S   and is S . If S S  , we simplify the notation as  iR s , or simply iR . Obviously, a 

smaller number in ranking implies a higher score in the exam. We have the following property. 

Lemma 2.1: For any set of n  students, denoted by  1 2: , 1, ,
kn i nS s i i i k n     , where 

1 n N  , we have  
1

1
, 1i nProb R s S

n
  
 

 and  
1

, 1
ni nProb R s S

n
  
 

. 

The proof is in the appendix. Lemma 2.1 implies that 
1

( )
2

i iProb Y Y    for any i i . To 

avoid discussion about tie-breaking rules, we further simplify our analysis by assuming that for any 

two students is  and is  , it is a shy event for them to have the same score, that is, 

  0, ,min max

i iProb Y Y y y y y
       . Thus we have 

1
( )

2
i iProb Y Y    since   0i iProb Y Y   . 

As our analysis will show, the following definition, pair of competing students, is a key concept 

in deriving our results.  

Definition 2.2 (Pair of competing students): Two students is  and is   are competing with each 

other if ( ) (0,1)i iProb Y Y    or ( ) (0,1)i iProb Y Y   . 

Note that the definition above describes a competing relationship between two students under a 

very general setting of joint score distributions. Since we rule out the case of having a tie 

(   0i iProb Y Y   ), we have ( ) (0,1)i iProb Y Y    if and only if ( ) (0,1)i iProb Y Y   . Furthermore, 

since in our framework iY  and iY   are independent for any  , 1,...,i i N , the definition of the 

pair of competing students is equivalent to the following one. 

Definition 2.2’ (Pair of competing students): Two students is  and is   are competing with 

each other if there exist , ( )i i iy y supp   and , ( )i i iy y supp   
   such that i iy y  yet i iy y 

  . 

In a special case where supports of score distributions are intervals, the condition for a pair of 

                                                             
8 Score uncertainties affect the equilibrium only through the expected payoffs in our complete information game setup. 

However in reality, abilities as well as score distributions may be private information. It is also plausible that students 

may not know their own true abilities and receive private noisy signals about their abilities. In those contexts, a Bayesian 

game modeling framework must be introduced to handle the analysis. We leave this to our future research. One point we 

may hypothesize is that when there are a large amount of students, the Bayesian game analysis may lead to conclusions 

similar to those from our complete information game framework. 
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students competing with each other becomes ( ) ( )i isupp supp    . Intuitively, in this case, two 

students are competing with each other if and only if their score distributions overlap. 

Furthermore, suppose student scores are bounded from both below and above. 1,...,i N  , let 

 : ( )inf

i i i iy inf y y supp    and  : ( )sup

i i i iy sup y y supp   , where min inf sup max

i iy y y y   . 

Thus two students is  and 
is   with i i are competing with each other if and only if inf sup

i iy y  . 

We have the following lemma concerning the competing relationship among students. 

Lemma 2.2: Suppose that student scores have first-order stochastic dominance relations. Given 

1 i i N   , if two students is  and 
is   are competing with each other, then for any two students 

is   and 
is   with i i i i     , they are competing with each other.  

The proof is in the appendix. Intuitively, competing relationships exist among all the 

“neighboring” students. For all the students, we can define a symmetric situation as having a 

competition degree of n , if competing relationship exists among any n  neighboring students.  

Definition 2.3 (Competition degree): A joint score distribution of all the students has a 

competition degree of n , where 1 n N  , if competing relationship exists within any group of at 

most n  students with neighboring intrinsic abilities, and does not exist within any group of more 

than n  students. 

More concretely, if a joint score distribution has a competition degree of n , then for any student 

is , the most able student that has a competing relationship with is  is student 
{ 1,1}max i ns  

, and the 

least able student that has a competing relationship with is  is 
min{ 1, }i n Ns  

. If 1n  , there is no 

competition relations among students at all; if n N , all the students have competing relations with 

each other. 

2.2 Ex-ante and Ex-post Fairness 

In general, our concept of fairness reflects that “better” students should go to “better” schools. 

This can be defined rigorously as follows, from both ex-ante (ability-based) and ex-post (score-based) 

perspectives.  

Definition 2.4 (Complete Ex-ante Fairness): A matching outcome :f S C  is completely 

ex-ante fair if for any pair of students is  and is   with i i , we have ( ) ( )
ii s if s f s  . 

The concept of “complete” ex-ante fairness is the ex-ante analogy to the existing concept in the 

literature of ex-post fairness. However, in the ex-ante case, there is a potentially useful weaker notion 

of fairness which only requires probabilistic fairness rather than one with certainty. This is 

represented by our concept of stochastic ex-ante fairness. Let 
ijp  denote the probability of student 

is  matched with j th most preferred school in the matching outcome, and 𝑝𝑖(𝑘) ≡ ∑ 𝑝𝑖𝑗
𝑘
𝑗=1 , 𝑘 =

1, … , 𝑁  be student is ’s corresponding cumulative distribution function over the schools. The 

concept of stochastic ex-ante fairness can be defined as follows.  
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Definition 2.5 (Stochastic Ex-ante Fairness): A matching outcome :f S C is stochastically 

ex-ante fair if for any pair of students is  and is   with i i , we have 𝑝𝑖′(∙) FOSD ( )ip  , which 

implies (i) ∀𝑘 ∈ {1,… ,𝑁}, 𝑝𝑖(𝑘) ≥ 𝑝𝑖′(𝑘), and (ii) ∃𝑘 ∈ {1,… , 𝑁}, 𝑝𝑖(𝑘) > 𝑝𝑖′(𝑘).
9 

Finally we give the definition for ex-post fairness: 

Definition 2.6 (Ex-post Fairness): A matching outcome :f S C is ex-post fair if for any 

score realization y  : 1, ,iy i N
  , for any pair of students is  and is   with i iy y   (or 

equivalently, i iR R  ),  we have ( ) ( )
ii s if s f s  . 

Note that complete ex-ante fairness implies for any student is , 1iip  . Therefore, a matching 

outcome is completely ex-ante fair if students with higher intrinsic ability (thus higher expected 

scores) are always matched with better colleges. A matching outcome is stochastically ex-ante fair if 

students with higher intrinsic ability are more likely to be matched with better colleges, in the sense 

that the “distribution of school quality” of a better student FOSD that of a worse student. It is clear 

that complete ex-ante fairness implies stochastic ex-ante fairness, thus the former can be regarded as 

a “first-best” criterion and the latter a “second-best” one. Our analysis later on will show that the 

distinguishing between these two ex-ante concepts is critical for our result. A matching outcome is 

(completely) ex-post fair if students with higher realized scores are always matched with better 

colleges. We denote a student is ’s ex-ante fair matched school by ( )a

if s , and the ex-post fair 

matched school by ( ,p

if s y ) , given the score realization y  : 1, ,iy i N
  . Alternatively, we 

can say that student is  ex-ante belongs to school 
jc  if ( )a

j ic f s , and ex-post belongs to school 

jc  if ( ,p

j ic f s y ) , given the score realization y . It is straightforward that under our setting

( )a

i if s c . 

A key assumption we make in this paper is that students have homogeneous preferences over 

schools. Although this assumption is stringent, it is not totally artificial. It represents a stylized fact 

that students have conflicts of interest with each other. Contrarily, as an extreme example, if all 

students prefer totally different schools, school priority rules will become useless, students do not 

need any preference manipulation, and the school matching problem does not involve any welfare 

concerns. We find that this assumption is important for us in order to deliver a tractable analysis on 

the pre-BOS mechanism, and also helps us to deliver some interesting results for other mechanisms 

studied in literature. It also largely reflects the reality in China’s college admissions system where 

students’ preferences over colleges are at least similar to some degree. In Section 5, which discusses 

extensions to the model, we attempt to relax this assumption by considering situations with some 

degree of preference heterogeneity among students, and we find that most (but not all) of our results 

can be extended naturally. 

2.3 Mechanisms 

We study four mechanisms on their possibilities of implementing ex-ante (completely or 

stochastically) fair matching outcome in their Nash equilibria. We categorize mechanisms from two 

                                                             
9 Note that our labeling of students’ preferences over schools has more preferred schools denoted by smaller numbers, 

which is the opposite of the standard labeling in the definition of FOSD. Thus, 𝑝𝑖′(∙) FOSD ( )ip  . 
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dimensions. One is the usual division discussed in the literature, that is, Boston (BOS) mechanism 

versus Serial Dictatorship (SD) mechanism.10 The other dimension is the new feature of preference 

submission timing: preference submission occurring before the exam is taken versus after the scores 

are known. Under the timing of preference submission before the exam, a student only knows his 

score distribution as well as all the other students’ score distributions. Under the timing of preference 

submission after the exam, a student has full information about all students’ realized scores. We call 

the Boston mechanism with preference submission before the exam the “pre-BOS” mechanism, and 

the Boston mechanism with preference submission after the exam with known scores the “post-BOS” 

mechanism. “Pre-SD” and “post-SD” mechanisms are similarly defined. 

The following is a formal description of all the four mechanisms that we will discuss. 

Pre-BOS Mechanism 

Step 1. Students submit their preference ordering lists on all the schools. 

Step 2. An exam is taken and all the students will have a realized score. 

Step 3. All the students’ first ranked schools are considered. Schools will admit students who 

rank them first and have higher realized scores until all the slots are occupied.  

Step 4. Students not admitted in the previous step are considered by their second-ranked schools.  

……. 

The procedure ends when all the students are admitted or when all the ranked schools of all the 

students have already been considered.  

Note that in our problem, students have no outside options (or do not prefer these options). The 

procedure will end in at most step N+2 and all the students will be admitted. This is also true for all 

the other mechanisms. 

Pre-SD Mechanism 

Steps 1 and 2 are the same as in pre-BOS mechanism. 

Step 3. Student with the highest realized score is considered. He or she will be admitted by his or 

her top ranked school. 

Step 4. Student with the second highest realized score is considered. He or she will be admitted 

by his or her highest ranked school that has an empty slot. 

…… 

Step N+2. Student with the lowest realized score is considered. He or she will be admitted by his 

or her highest ranked school that has an empty slot.  

                                                             
10 Under acyclic school priority, Top Trading Cycles (TTC) mechanism is equivalent to Gale-Shapley(GS) or Deferred 

Acceptance(DA) Mechanism (Kesten, 2006), and SD becomes a special case of TTC mechanism (Abdulkadiroglu and 

Sonmez, 2003). 
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Post-BOS Mechanism 

Step 1. An exam is taken and every student will have a realized score. 

Step 2. Students submit their preference ordering lists on all the schools. 

All the remaining steps are the same as in pre-BOS mechanism.      

Post-SD Mechanism 

Steps 1 and 2 are the same as in post-BOS mechanism. 

Steps 3 to (N+2) are the same as in pre-SD mechanism.  

3. Implementing Complete Ex-ante Fairness 

We first focus on the complete ex-ante fairness issue, by considering under what conditions 

each of the four mechanisms can implement such a socially-desirable matching outcome. 

3.1 Mechanisms other than pre-BOS 

We first characterize equilibrium under mechanisms other than pre-BOS.  

Since we assume each school follows the same priority, i.e., students’ realized score rankings, 

the post-BOS and post-SD mechanism will implement in their Nash equilibrium the unique ex-post 

fair matching outcome.  

Proposition 3.1: Both the post-BOS and post-SD mechanisms will implement the unique 

ex-post fair matching outcome in all Nash equilibria. Furthermore, post-SD is a strategy-proof 

mechanism but post-BOS is not. 

The proof is in the appendix.11 The unique ex-post fair matching outcome is merely that for any 

1,...,i N , student is  is matched with school 
jc  if is  has the j th highest score, i.e., ( ,p

if s y

) jc , if iR j  for any y .  

Our second proposition concerns the equilibrium under the pre-SD mechanism.  

Proposition 3.2: The pre-SD mechanism is a strategy-proof mechanism, and in its 

truth-telling equilibrium the unique ex-post fair matching outcome is implemented. 

                                                             
11 Balinski and Sonmez (1999) shows that the SD mechanism can be characterized as the unique (ex-post) fair 

mechanism that is Pareto optimal (and it is also strategy-proof), which constitutes part of our result in Proposition 3.1. 

Since our results regarding the BOS mechanism require different proof techniques, to be consistent, we adopt a different 

approach for the proof as a whole. 
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The proof is in the appendix. Propositions 3.1 and 3.2 state that all the three mechanisms 

(post-BOS, pre-SD and post-SD) implement the unique ex-post fair matching outcome. 

Such a matching outcome can be ex-ante fair if and only if there are no competing relationships 

between any two students. That is, for any two students is  and is  , i i  must imply 

( ) 1i iProb Y Y    and ( ) 0i iProb Y Y   . Otherwise, if ( ) 0i iProb Y Y   , then ( ) 0i iProb R R   , 

and by the definition of ex-post fairness, this implies ( ( ,p

iProb f s  Y ) s ( ,p

if s Y )) 0 . Note that 

this result also holds the other way around. We describe this finding in the following theorem: 

Theorem 3.1: The pre-SD (under its truth telling equilibrium), post-BOS and post-SD 

mechanisms implement complete ex-ante fairness if and only if students have no competing 

relationship with each other. 

3.2 Pre-BOS Mechanism 

In this subsection we focus on the pre-BOS mechanism, especially on its potential of 

implementing completely ex-ante fair matching outcomes in equilibrium. The following example, in 

which students have competing relationships, shows a case where the pre-BOS mechanism can 

achieve complete ex-ante fairness while the other three mechanisms cannot. 

Example 1: Suppose there are three students 1s , 2s  and 3s , and three schools 1c , 2c  and 

3c . Each school has one slot. Students have the same cardinal utilities on schools as the following: 

 School c1 School c2 School c3 

Student s1-s3 100 67 25 

Each student has an independent score distribution as follows: 

 Score 1( prob. =1/2) Score 2 (prob.=1/2) 

Student s1 95 90 

Student s2 94 89 

Student s3 88 84 

Note that student 1s ’s score first-order stochastically dominates student 2s ’s score, which in 

turn first-order stochastically dominates student 3s ’s score. In addition, students 1s  and 2s  have 

competing relations with each other, while student 3s  has no competition with the other two 

students. 

Under the three mechanisms we discuss in the above section (post-BOS, pre-SD and post-SD), 

the matching outcome is ex-post fair. That is, the student with the highest realized score (either 

student 1s  or 2s ) would be matched with school 1c , the student with the second highest score ( 1s  

or 2s )  would be matched with school 2c , and the student with the lowest score ( 3s ) would be 

matched with school 3c . This matching outcome however, is not completely ex-ante fair. To see this, 
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suppose that the realized scores are (90, 94, 88) for students 1s , 
2s  and 

3s , then student 
2s  would 

be matched with school 1c  and student 1s  would be matched with school 2c .  

Under the pre-BOS mechanism, it is easy to characterize the following Nash equilibrium: 

student 1s  listing school 1c  as his first choice, 2s  listing 2c  as his first choice, and 3s  listing 

2c  as his first choice. The matching outcome is completely ex-ante fair. That is, is  is always 

matched with ic , for 1,2,3i  .12 

The random matching outcome for each mechanism is characterized by   : , 1,2,3ijp i j , and 

shown in the following table. Part (3) of the table also shows the differences of 
ijp ’s between 

different mechanisms. It is clear that pre-BOS implements complete ex-ante fairness while the others 

are not.  

(1) pre-/post-SD, 

post-BOS 

 (2) pre-BOS  (3) Diff. (2)-(1) 

pij c1 c2 c3  pij c1 c2 c3  pij c1 c2 c3 

s1 3/4 1/4 0  s1 1 0 0  s1 1/4 -1/4 0 

s2 1/4 3/4 0  s2 0 1 0  s2 -1/4 1/4 0 

s3 0 0 1  s3 0 0 1  s3 0 0 0 

Our next proposition characterizes the equilibrium under the pre-BOS mechanism when the 

mechanism achieves complete ex-ante fairness.  

                                                             
12 This equilibrium has some interesting properties. First, in the above characterized equilibrium, students’ second and 

third choices do not matter. Second, in equilibrium student 
3

s  is in fact indifferent between all his strategies. This 

implies that there may be other equilibria in pure or mixed strategies. In fact, all the pure and mixed strategy equilibria 

can be characterized as follows: Student 
3

s  plays a mixed strategy of 
1 2 3

( , , )c c c  with probability q  and 
2 1 3

( , , )c c c  

with probability 1 q  where 
31

42
q  , and all the other students play the above-mentioned strategies. If 

3
s  chose a 

higher probability (i.e., 
31

42
q  ) of playing 

1 2 3
( , , )c c c , then it would be optimal for student 

2
s  to choose 

1 2 3
( , , )c c c  

instead of his equilibrium strategy, to compete with 
1

s for 
1

c , due to the lack of threat from 
3

s  of stealing 
2

c . 

However, if 
2

s  chose 
1 2 3

( , , )c c c , 
3

s  would find it optimal to choose 
2

c  as his first choice, contradicting the 

assumption that 
31

42
q  . Third, although the game has multiple equilibria, the equilibrium outcome can be proven to be 

unique. 
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Proposition 3.3: The pre-BOS mechanism implements in its pure-strategy Nash equilibrium 

the completely ex-ante fair matching outcome only if every student except 
Ns  (the least able 

student) puts his ex-ante fair matched school as his first choice, and is admitted by that school. 

The proof is in the appendix. Proposition 3.3 can also be extended when we consider 

mixed-strategies. 

Corollary 3.1 (of Proposition 3.3): The pre-BOS mechanism implements in its mixed-strategy 

Nash equilibrium the completely ex-ante fair matching outcome only if every student except 
Ns  

(the least able student) always puts his ex-ante fair matched school as his first choice, and is 

admitted by that school. 

The proof is in the Appendix. In our later discussion, we will focus on pure-strategy equilibrium. 

The reason is two-fold: First, focusing on pure-strategy equilibrium facilitates our comparison 

between different mechanisms. As we have shown in Propositions 3.1 and 3.2, all the other 

mechanisms must have a pure-strategy equilibrium. If we consider mixed-strategy equilibrium for 

pre-BOS, we have to consider mixed-strategy equilibrium for all the other mechanisms. Second, as 

we have proved in Proposition 3.3 and Corollary 3.1, although mixed-strategy equilibrium may exist, 

under any equilibrium where complete ex-ante fairness is achieved, students except Ns  will always 

put their ex-ante fair matched schools as their first choices, and be admitted by those schools, no 

matter whether they are in a mixed-strategy or a pure-strategy equilibrium. So focusing on 

pure-strategy equilibrium does not restrict our characterization of equilibrium strategy for all the 

students except student Ns . Allowing for mixed-strategy for Ns  will enrich our equilibrium 

strategy profile, although under such an equilibrium Ns  is indifferent for all of his mixed or pure 

strategies (as we will prove later).  

Proposition 3.3 and Corollary 3.1 actually impose a rather strict necessary condition for the 

pre-BOS mechanism to implement completely ex-ante fair matching outcome in pure (or mixed) 

strategy NE. If such a matching outcome can really be implemented in NE, almost all the students 

(except student Ns ) should put their ex-ante fair matched schools as their first choices. However, the 

strategy profile where almost all the students put their ex-ante fair matched schools as their first 

choices can hardly form a Nash equilibrium under the pre-BOS mechanism. Theorem 3.2 illustrates 

this point, where we use ( )i ju c  to denote the cardinal utility of getting admitted by school 
jc  for 

student is , where , 1, ,i j N . 

Theorem 3.2: The pre-BOS mechanism implements completely ex-ante fair matching outcome 

in (one of) its (pure-strategy) Nash equilibrium if and only if either one of the following two 

conditions is satisfied: 

Condition 1: There is no competing relationship between any two students. 

Condition 2: There exist a unique student 
k

s , where 1 k N  , and a nonempty subset of 

students  k i
S s : 1 i k   , such that  

(2.1)  ˆi ,i 1, , N  , 
i

s  and 
î

s  are a pair of competing students if and only if 
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i k
s S   satisfying    ˆi ,i i ,k ; 

(2.2)  
i k

k i k i k i k N k k
s S
Max Prob(Y Y ) u ( c ) ( 1 Prob(Y Y )) u ( c ) u ( c )


       .  

Proof:  

Sufficiency: 

Condition 1. If there is no competing relationship between any two students, students’ realized 

score ranking is the same as their expected score ranking. The pre-BOS mechanism actually 

degenerates to a post-BOS mechanism, and the complete ex-ante fairness degenerates to ex-post 

fairness. According to Proposition 3.1, pre-BOS implements completely ex-ante (and ex-post) fair 

matching outcome in its NE. 

Condition 2. We would like to prove that the strategy profile, where every student except Ns  

(the student with the lowest expected score) puts his ex-ante fair matching school as his first choice 

and student Ns  puts school kc  as his first choice, forms a Nash equilibrium under condition 2, 

First consider any student is  , where 1 i N   and i k  . Case 1: i ks S : In this case 

student is   has no competing relationship with any other student. Case 2: i ks S : In this case 

student is   has no competing relationship with any students who are more able than is  . Given that 

all the other students (except Ns ) put their ex-ante fair matched schools as their first choices, student 

is   has no incentive to deviate from his strategy, i.e., also putting his ex-ante fair matched school as 

his first choice. Because any profitable deviation for him must consist of submitting a better school, 

ic , i i , as his first choice. However, since he does not have competing relationship with any 

students who are more able than him, he has no chance to be admitted by any better school.  

Then consider student ks . He actually has competing relationship with all the students in kS . 

The only possibly profitable deviation for him is to put some school, ic , where i  is chosen such 

that i ks S , as his first choice. If he does so, he will have two possible outcomes. Outcome 1 is that, 

with probability ( )k iProb Y Y , he is admitted by school ic . Outcome 2 is that, with probability 

1 ( )k iProb Y Y  , he fails in competition with student is  , loses his first choice school, and can only 

be admitted by school Nc . The second outcome is due to the fact that all other students except Ns  

have been admitted by their first choices, and student Ns  has been admitted by school kc  as his 

first choice. So if condition (2.2) holds, that is 

 ( ) ( ) (1 ( )) ( ) ( )
i k

k i k i k i k N k k
s S
Max Prob Y Y u c Prob Y Y u c u c


       , 

student ks  will also have no incentive to deviate from the strategy stated in Proposition 3.3. 

   Finally consider student Ns . If all the other students have no incentive to deviate from their 
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strategies stated in Proposition 3.3, Ns  also does not have incentive to deviate: Since he has no 

competing relationship with any other students, putting any school ic  with i N  as his first 

choice will not give him any chance of being admitted by school ic . He can only be admitted by 

school Nc  and thus is indifferent with any strategies, including the strategy of listing school kc  as 

his first choice. 

Necessity: 

According to Proposition 3.3, if the pre-BOS mechanism implements in its pure-strategy Nash 

equilibrium the completely ex-ante fair matching outcome, then every student except Ns  (the 

student with the lowest expected score) puts his ex-ante fair matched school as his first choice. What 

is left to be found is the necessary condition for such a strategy profile to form a Nash equilibrium. 

First, consider student Ns . He cannot have competing relationship with any other students. 

Otherwise given other students’ choices as in the completely ex-ante fair equilibrium strategy profile, 

he can put a school ic  with i N as his first choice if he has competing relationship with some 

student is . By doing so he can have a positive probability to be matched with school ic . Such a 

matching outcome is not completely ex-ante fair. 

Then, consider student 1Ns  . If he does not have any competing relationship with any other 

students, then he obviously has no incentive to deviate from the completely ex-ante fair equilibrium 

strategy profile. If he deviates, he has no chance of being admitted by any better school, since all the 

students except Ns  have put these better schools as their first choices. 

Sequentially check student ks , 1, 2, ,1k N N   , until we find one student who does have 

competing relationship with some student is  with i k . If we could not find such a student, then 

we have the situation described by Condition 1. As we have shown for student 1Ns   when he has no 

competing relationship with others, it is obvious that all the students will have no incentive to deviate 

from the completely ex-ante equilibrium strategy profile. 

Now consider the situation where such a student ks  with 1 k N   does exist. Denote the set 

of students that ks  has competing relationship with by kS . Obviously for any student i ks S , we 

have 1 i k  . We would like to make sure that ks  has no incentive to deviate from his completely 

ex-ante fair equilibrium strategy, i.e., putting kc  as his first choice. This can be guaranteed if and 

only if (i) student Ns  must put kc  as his first choice, and (ii) 

 ( ) ( ) (1 ( )) ( ) ( )
i k

k i k i k i k N k k
s S
Max Prob Y Y u c Prob Y Y u c u c


       . 

Consider Condition (i) first. Suppose that student Ns  does not put kc  as his first choice. Then 

student ks  must have incentive to deviate. Actually a deviation of putting some ic  such that 

i ks S  as his first choice, a school “owned” by student is  who he has competing relationship with, 

and putting kc  as his second choice will lead to a result where he is admitted by either ic  or kc , 
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which is a better result than the one where he sticks to the equilibrium strategy. However, if all the 

other students sticks to their equilibrium strategy, since student Ns  has no competing relationship 

with others, such a strategy for Ns  is (one of) his equilibrium strategies.  

For Condition (ii). Given that student Ns  puts school kc  as his first choice, this condition 

guarantees that student ks  has no incentive to deviate. 

The only thing left to be proved is that there cannot be another student ks   with 1 k k   who 

also has competing relationship with some student is  with 1 i k  . If such a student does exist, 

he must have incentive to deviate: He can just put school ic  as his first choice and school kc   as 

his second choice. He can then be admitted by either ic  or kc  , which is a better result than the one 

where he sticks to the equilibrium strategy.13 

Note that our example 1 actually satisfies Condition 2, with 3N  , 2k  ,  2 1S s  and 

 
175

( ) ( ) (1 ( )) ( ) 67 ( )
4k

k i k i k i k N k k
i S

Max Prob Y Y u c Prob Y Y u c u c


         . 

Compared with Theorem 3.1, Theorem 3.2 implies that pre-BOS indeed is more likely to 

implement complete ex-ante fairness than other mechanisms: It can implement complete ex-ante 

fairness even if students have some competing relationship with each other (by Condition 2). 

However, the superiority of pre-BOS is marginal, because the competing relationship allowed is very 

strict. Recall that if student scores have first-order stochastic dominance relations, Lemma 2.2 shows 

that if two students is  and is   are competing with each other, then for any two students is   and 

is   with i i i i     , they are also competing with each other. However, in Theorem 3.2, we only 

allow that a subset of students have competing relations with a unique student, ks . Therefore the 

only competing relationship we allow for is that there is only one pair of competing students, 1ks   

and ks , where 1 k N  . The competition degree is almost zero, if N  is large. 

In our extension section later on we are going to relax some of our assumptions here. It turns out 

by those relaxations, the pre-BOS mechanism can have a larger chance to “defeat” the three other 

mechanisms. Relaxation includes multiple school slots, non-strict student preferences, as well as 

some degree of heterogeneous student preferences. An even more significant improvement on 

pre-BOS for implementing complete ex-ante fairness is by using a “constrained” pre-BOS 

mechanism, which we analyze below. 

                                                             
13 If mixed-strategies are allowed, there can be other equilibria. Student Ns  can mix several pure strategies such that in 

his first choice he can put a number of schools there. Suppose the set of such schools is 
N

C . Then for any student ks  

such that 
k N

c C , this student can have competing relations with a subset of students  :1
k i

S s i k   . The 

condition for student ks  not to deviate is: 

 ( ) ( ) (1 ( )) [(1 ) ( ) ( )] ( )
i k

k k

k i k i k i N k k N k N k k
s S

Max Prob Y Y u c Prob Y Y p u c p u c u c


           , where 
k

N
p  is the probability with 

which student 
N

s  puts school 
k

c  as his first choice. 
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3.3 Constrained pre-BOS Mechanism 

Under the unconstrained pre-exam BOS mechanism, if other students put their ex-ante fair 

matched schools as their first choices, a student is  who has competing relationship with a better 

student will have a strong incentive to deviate by competing with such a better student. The reason is 

that he is insured by his second choice: If student Ns  does not put ic  as his first choice, is  can 

put ic  as his second choice and being admitted by ic  if he fails in the competition. One way to 

weaken this competing (or stealing) incentive is to get rid of this second choice. 

We now consider a constrained pre-BOS mechanism, where each student is allowed to submit 

only one school in his preference ordering list. If a student is not admitted by his first choice, he will 

not be admitted by any school, and his utility is ( ) 0iu   , where “ ” means not being admitted at 

all. We further assume that ( ) 0i ju c  , for any , 1, ,i j N .  

We might be interested in the matching outcome if we put such a restriction on other 

mechanisms. It is worth noting that when each student’s preference submission is only allowed to 

contain one school, the constrained pre-BOS mechanism as specified above is equivalent to the 

analogously defined constrained pre-SD mechanism, while more general versions of these two 

mechanisms differ from each other. The same relationship holds for the constrained post-BOS and 

post-SD mechanisms. For these two mechanisms, such a restriction will not affect matching 

outcomes (Haeringer and Klijn, 2009, Proposition 5.2 and Theorem 5.3), and if every student can 

only submit one school, the students will just put their ex-post fair matched schools as their first 

choices in Nash equilibrium. 

By putting a limit on the number of schools students are allowed to list, we have the following 

proposition. 

Proposition 3.4: The constrained pre-BOS (or equivalently, constrained pre-SD) mechanism 

(where each student can only apply for one school) implements in its pure-strategy Nash 

equilibrium completely ex-ante fair matching outcomes if and only if for any student 
k

s , for any 

student 
i

s  such that 
i

s  and 
k

s  are a pair of competing students and i k , 

k i k i k k
Prob(Y Y ) u ( c ) u ( c )   . 

The proof is in the Appendix. It is worth mentioning that by FOSD relations of student scores, 

we have 
1

( )
2

k iProb Y Y  , if i k . So if 
1

( ) ( )
2

k k k iu c u c  for any pair of competing students is  

and ks  with i k , given that ( ) 0iu   , the constrained pre-BOS/SD mechanism can implement 

in its Nash equilibrium completely ex-ante fair matching outcome. This condition may be easy to 

satisfy because competing relations usually exist between neighbored students, so k  cannot be too 

much larger than i , thus ( )k iu c  also cannot be too much larger than ( )k ku c . 

Note also that if Condition 1 or 2 of Theorem 3.2 holds, the condition for Proposition 3.4 must 

hold: If there is no competing relationship between any two students (Condition 1), the condition for 

Proposition 3.4 holds trivially; For the case where only one student ks  has competing relationship 
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with others (Condition 2), condition (2.2) also implies the above inequality, since ( ) 0k Nu c  . 

However, the opposite is definitely not true. In particular, unlike Conditions 1 and 2 for Theorem 3.2, 

which put strict restrictions on competing relationship among students, Proposition 3.4 does not 

require any restriction on the competing relationship among students. It can hold even when all the 

students have competing relationship with each other, as long as the above inequality holds. Thus we 

have the following corollary. 

Corollary 3.2 (of Proposition 3.4): The constrained pre-BOS/SD mechanism implements 

complete ex-ante fair matching outcomes in its pure-strategy Nash equilibrium if the 

unconstrained pre-BOS mechanism does so. 

In other words, the constrained pre-BOS is more likely to achieve complete ex-ante fairness than 

the unconstrained pre-BOS. This result is interesting if we consider the literature on constrained 

school choice. Haeringer and Klijn (2009) and Calsamiglia, Haeringer and Klijn (2010) find that by 

limiting school submission quota, the BOS mechanism can “catch up” with other mechanisms 

because its equilibrium outcome does not depends on quotas, while those strategy-proof mechanisms 

(GS, TTC/SD) may be greatly affected. Our result seems to strengthen theirs in the sense that under 

the preference submission timing of before the exam, the constrained BOS mechanism can even 

outperform other truth-telling mechanisms with unconstrained choices.14 This also parallels the 

finding in Abdulkadiroglu, Che and Yasuda (2015) regarding their CADA algorithm that a richer 

message space for students to express their preferences need not yield superior ex-ante welfare 

outcomes. 

4. Implementing Stochastic Ex-ante Fairness 

   Our previous results favor the pre-BOS mechanism than the other three mechanisms 

(pre-/post-SD, post-BOS), by showing that pre-BOS (especially the constrained one) is more likely 

to implement complete ex-ante fairness. Is it our policy recommendation that we should adopt the 

(constrained) pre-BOS mechanism to improve ex-ante fairness? Not necessarily. Note that the 

superiority of pre-BOS (either constrained or unconstrained) is somehow vulnerable, because it 

depends on the cardinal utilities of students. This is in turn because of two reasons: (i) Uncertainty of 

scores when students submit their preference list, and (ii) Non-strategy-proofness of the BOS 

mechanism. Lack of any of these two elements may make cardinal preference considerations 

unnecessary. This suggests that for the other three mechanisms, although they are less likely to 

implement the complete ex-ante fairness, they may be more robust to implement some kinds of 

ex-ante fairness, which turns out to be the stochastic ex-ante fairness (see Definition 2.5). In this 

section we will consider stochastic ex-ante fairness issues for all these four mechanisms 

(pre-/post-BOS/SD). 

                                                             
14 Zhong, Chen and He (2004) considers the constrained pre-and post-BOS mechanisms under a special case with 2 

students and 2 schools, and draws a similar conclusion. They also consider a midway-BOS where students submit 

preference after exam is taken but before scores are known, and model it as a Bayesian game. See Xu (2013) for an 

extension of that paper. 
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4.1 Mechanisms other than Pre-BOS 

For the three mechanisms other than pre-BOS (i.e., post-BOS, pre-/post-SD), we have the 

following theorem. 

Theorem 4.1: Pre-SD (in its truth-telling equilibrium), post-SD and post-BOS implement 

stochastic ex-ante fairness in their (pure-strategy) Nash equilibrium. 

   The proof (in the appendix) is straightforward after showing that the FOSD relations for the score 

distribution implies the reversed FOSD relations for the score ranking (Lemma A.1 in the appendix). 

   Although these three mechanisms can always implement stochastic ex-ante fairness, the degree 

of ex-ante fairness within the family of stochastic ex-ante fairness can vary a lot. On one extreme 

case, complete ex-ante fairness is stochastically ex-ante fair. On the other extreme case, each student 

having the same and equal probability of being admitted by each school is also very close to 

(although not the same as) stochastic ex-ante fairness. Intuitively, the degree of ex-ante fairness 

within this stochastic ex-ante fairness depends on how precisely student scores reflect their true 

abilities. 

4.2 Pre-BOS Mechanism 

Now we consider the pre-BOS mechanism. We first provide two examples: Example 2 shows 

that pre-BOS can be more stochastically ex-ante fair than the others; while Example 3 shows that 

pre-BOS can implement an outcome that is not stochastically ex-ante fair, in which case pre-BOS is 

obviously less stochastically ex-ante fair than the others. 

Example 2: All the set-ups are the same as in Example 1 except that the students’ score 

distributions are modified as the following: 

 

 Score 1( prob. =1/2) Score 2 (prob.=1/2) 

Student s1 95 90 

Student s2 91 86 

Student s3 87 82 

Note that now not only students 1s  and 2s  have competing relationship with each other, but 

also students 2s  and 3s  have competing relationship with each other. (By Definition 2.3, the 

competition degree is 2 here.) 

Under other three mechanisms, the matching outcome is ex-post fair: Student with the highest 

realized score will get the best school, and so on. The equilibrium matching outcome 

  : , 1,2,3ijp i j  is shown in the table below (part (1)). It is easy to verify that this matching 

outcome is stochastically ex-ante fair. 

Under the pre-BOS mechanism, it is easy to characterize the following Nash equilibrium: 
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student 1s  listing school 1c  as his first choice, 
2s  listing 

2c  as his first choice, and 
3s  listing 

2c  as his first choice. The equilibrium matching outcome   : , 1,2,3ijp i j  is shown in the table 

below (part (2)). This matching result is also stochastically ex-ante fair. 

It is easy to see that the pre-BOS implement more stochastic ex-ante fairness than other 

mechanisms. This is shown in part (3) in the following table, by calculating the differences of 
ijp ’s 

between the two matching outcome for each i  and j . Pre-BOS always weakly increases the 

probabilities of ex-ante fair matching (i.e.,   : 1,2,3iip i ) and weakly decrease probabilities of 

ex-ante unfair matching (i.e,   : , 1,2,3 , ,ijp i j i j  ), compared with other mechanisms.  

 

(1) pre-/post-SD, 

post-BOS 

 (2) pre-BOS  (3) Diff. (2)-(1) 

pij c1 c2 c3  pij c1 c2 c3  pij c1 c2 c3 

s1 3/4 1/4 0  s1 1 0 0  s1 1/4 -1/4 0 

s2 1/4 1/2 1/4  s2 0 3/4 1/4  s2 -1/4 1/4 0 

s3 0 1/4 3/4  s3 0 1/4 3/4  s3 0 0 0 

In Example 2, under the pre-BOS mechanism, Condition (2.1) in Theorem 3.2 is violated: 

Student 3Ns s  has competing relationship with others and can “destroy” ex-ante fairness by 

applying for better schools. However, the best student 1s  is still “protected” since Condition (2.2) 

still holds and students who have competing relationship with him (here student 2s ) would choose 

not to compete with him. This is the main reason why in this example pre-BOS is more stochastically 

ex-ante fair than the other mechanisms. It also seems paradoxical that student 1s  is protected just 

because student 2s  is not protected – it faces the (successful) competition from student 3s .  

Example 2 seems to suggest that the violation of Condition (2.1) may not have “huge” damaging 

effect on (stochastic) ex-ante fairness. It can even be helpful for ex-ante fairness by deterring 

“stealing” behavior of some more able students. However, the violation of Condition (2.2) may be 

more severe, since the direct effect of this would be to encourage the “stealing” behavior. Example 3 

suggests that this could be true. 

Example 3: All the set-ups are the same as in Example 2 except that the students’ cardinal 

preferences are now modified as in the following table: 

 School c1 School c2 School c3 
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Student s1-s3 100 35 25 

The Nash equilibrium under the pre-BOS mechanism now becomes the following: students 1s  

and 2s  listing school 1c  as their first choice, and 3s  listing 2c  as his first choice. The 

equilibrium under the other three mechanisms is irrelevant to cardinal preferences and thus is the 

same as in Example 2. 

The random matching outcome under different mechanisms are shown in the following table. It 

can be verified that the matching outcome under pre-BOS is no longer stochastically ex-ante fair. In 

particular, 
21 22 31 32

1
1

4
p p p p     . It can also be argued that pre-BOS is less stochastically 

ex-ante fair than the other three mechanisms: For students 2s  and 3s , it increases the probability of 

“mismatch” and decreases the probability of ex-ante fair matching; For student 1s , it does not affect 

the probability of ex-ante fair matching, but it increases the probability of a more severe “mismatch” 

( 13p ) and decreases that of a less severe “mismatch” ( 12p ).  

(1) pre-/post-SD, 

post-BOS 

 (2) pre-BOS  (3) Diff. (2)-(1) 

pij c1 c2 c3  pij c1 c2 c3  pij c1 c2 c3 

s1 3/4 1/4 0  s1 3/4 0 1/4  s1 0 -1/4 1/4 

s2 1/4 1/2 1/4  s2 1/4 0 3/4  s2 0 -1/2 1/2 

s3 0 1/4 3/4  s3 0 1 0  s3 0 3/4 -3/4 

Example 3 violates Condition (2.2) in Theorem 3.2. In particular, student 2s  has incentive to 

compete with student 1s . This violation of “ideal” equilibrium strategy “destroys” ex-ante fairness in 

two ways: First, it allows student 2s  himself to “steal” the school “owned” by student 1s . Second, 

it also creates an opportunity for student 3s , who can steal the school “owned” by student 2s . The 

chain of “stealing” behaviors may heavily destroy ex-ante fairness under the pre-BOS mechanism. 

It turns out difficult to fully characterize stochastic ex-ante fairness under the pre-BOS 

mechanism. Unlike pre-SD and post-SD, pre-BOS is not strategy-proof and students have incentive 

and space to manipulate their reported preferences. Also unlike post-BOS, where score uncertainty is 

resolved and students can only consider their ordinal preferences (at least in pure-strategy 

equilibrium), under pre-BOS equilibrium behaviors are jointly determined by score distributions and 

cardinal preferences. Just as our Examples 1-3 illustrate, any change in score distribution and 

cardinal preferences may result in changes in the equilibrium matching outcomes for pre-BOS. 

However, we are still able to characterize a necessary condition under pre-BOS for stochastic 
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ex-ante fairness (or a sufficient condition for stochastic ex-ante unfairness) under certain scenario 

with simple score distributions, defined in Definition 2.3, i.e., a symmetric competing relationship 

among students. 

Proposition 4.1: Suppose that the student score joint distribution satisfies n-degree ( n 1 ) 

competing relationship (as in Definition 2.3), then pre-BOS will implement stochastic ex-ante 

fairness in its weakly-dominant pure-strategy NE only if 
( )


n n 1

N
2

. 

The proof is in the appendix.  

Proposition 4.1 states that if the competition degree is not large enough, stochastic ex-ante 

fairness cannot be implemented under pre-BOS. However, if competition degree is 1n  , i.e., there 

is no competing relationship among student, as our Theorem 3.2 suggests, complete ex-ante fairness 

can be implemented under pre-BOS. The idea behind Proposition 4.1 is the following: If any 

competition relationship is allowed such that the competing (or “stealing”) behavior of students 

cannot be deterred (when Condition 2 of Theorem 3.2 cannot hold), to maintain a stochastic ex-ante 

fairness, competition must be so fierce that those who steal other students’ schools must also face 

“stealing” behavior from the other students, and so on. Look back to our Examples 2 and 3, which 

satisfies the symmetric competing relation with 3N   and 2n   so that 
( 1)

2

n n
N


 . There may 

exist a weakly-dominant pure-strategy NE such that stochastic ex-ante fairness can be implemented. 

Example 2 indeed shows the case (while Example 3 do not).  

An interesting special case would be n N . That is, all the students have competing 

relationship with each other. Under this condition, we can show that for some cardinal student 

preferences (but not all), truth-telling can be a (symmetric) equilibrium.15 Therefore, in such cases 

pre-BOS can be equally stochastically ex-ante fair as other mechanisms.  

Consider the following numeric example which is constructed to capture the reality of China’s 

college admissions. In each year, roughly 9 million students attended China’s college entrance 

examination. Therefore for each of 30 provinces and each track (humanity or science), on average 

there are 150,000 students, which can be considered as the number of students set in a single 

matching problem. Assuming the existence of a n -degree competing relationship among all the 

students, for stochastic ex-ante fairness to be possible, we need 
( 1)

150000
2

n n
N


  , or 548n  , 

or 0.365%
n

N
 . The full score in the exam is typically 750. Suppose that a typical student has a 

uniform score distribution with a span of 2b  and an average of x . That is, his possible score is 

equally likely drawn from [ , ]x b x b  . For any two students with average scores of 1x  and 2x , 

with 1 2x x , if they want to have competing relationship with each other, the largest possible gap of 

their average scores is 2 1 2x x b  . Suppose that the average score x  for all students are uniformly 

distributed from score 150 to 750. (150 is roughly the cutoff points for those colleges at the bottom 

level.) So we need 2 12 0.365% (750 150) 2.192b x x      , or 1.096b  . This almost surely 

holds in reality. 

                                                             
15 Furthermore, if n N , truth-telling is not an equilibrium for any cardinal utilities. 
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5. Extensions 

In this section we relax some of the assumptions on our basic model. First, we allow schools to 

have multiple slots. A similar situation we will also consider is that students have homogenous 

preferences over schools, but their preferences may not be strict. Second, we allow students to have 

some degree of homogenous preferences, i.e., they have the same preferences between groups of 

schools, but may not be so within each group.  

Our analysis here will focus on the pre-BOS mechanism. For the other mechanisms, results do 

not depend on whether those assumptions hold or not, except for the strict student preferences 

assumption, which is usually assumed in literature. We will see that this assumption is similar to the 

multiple school slots assumption, so it would be easy to address. 

5.1 Multiple School Slots and Non-Strict Student Preferences 

Multiple School Slots 

We first consider the case that each school has multiple slots. Assume that there are L  schools 

 : 1,...,jC c j L  , with the admission quota as  : 1,...,jQ q j L   such that 
1

L

j

j

q N


 . For 

any 1, ,j L ,we use  : ( )a a

j i i jS s S f s c    to denote the ex-ante student group of 
jc  in 

which each student’s ex-ante fair matched school is 
jc , and  : ( , )p p

j i i jS s S f s c  y  to denote 

the ex-post student group of 
jc  in which each student’s ex-post fair matched school is 

jc  given the 

realized scores of all the students y  : 1, ,iy i N  . 

Proposition 3.3 regarding the necessary condition for complete ex-ante fairness in equilibrium 

under pre-BOS can be revised as the following: 

Proposition 5.1: The pre-BOS mechanism implements in its pure-strategy Nash equilibrium 

the completely ex-ante fair matching outcome only if every student except students in 
L

a
S  puts 

their ex-ante fair matched school as their first choice. 

The proof parallels that of Proposition 3.3 and is thus omitted. 

Now we consider Theorem 3.2, the necessary and sufficient condition for complete ex-ante 

fairness under pre-BOS, which can be revised as the following: 

Proposition 5.2: The pre-BOS mechanism implements ex-ante fair matching outcome in (one 

of) its (pure strategy) Nash equilibrium if and only if either one of the following two conditions is 

satisfied: 

Condition 1. There is no competing relationship between any two students from different 
a

jS , 

j = 1, ,L . 

Condition 2: There exist a subset of students  :M

k L
S s S 1 k N q      with 
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#( )M

LS q , and for any M

k
s S there exist a nonempty subset of students 

 : ( ) ( )M

k i i s kS s f s f s
  , such that  

(2.1)  ˆi ,i 1, , N  , 
i

s  and 
î

s  are a pair of competing students if and only if 

ˆ( ) ( )
i i

f s f s
   or M

k
s S  , M

i k
s S   satisfying    ˆi ,i i ,k ; 

(2.2) M

k
s S  ,

 
M

i k

a a

k i k i k i k L k k
s S

Max Prob(Y Y ) u ( f ( s )) ( 1 Prob(Y Y )) u ( c ) u ( f ( s ))


       . 

The proof parallels that of Theorem 3.2 and is thus omitted. Note that Proposition 5.2 actually 

relaxes the conditions in Theorem 3.2. First, competing relationship between students within the 

same ex-ante student group, i.e., between students who have the same ex-ante fair matched school, 

are not restricted. Second, there can be multiple students (except students in a

LS ) who have 

competing relationship with students from other ex-ante student groups, as long as the number of 

these students is not too large ( #( ) #( )L

M aS S ).  

Proposition 3.4, characterizing the sufficient and necessary condition for constrained 

pre-BOS/SD to implement complete ex-ante fairness, can be rewritten as the following: 

Proposition 5.3: The constrained pre-BOS/SD mechanism (where each student can only apply 

for one school) implements in its pure-strategy Nash equilibrium completely ex-ante fair matching 

outcomes if and only if for any student 
k

s , for any student 
i

s  such that 
i

s  and 
k

s  are a pair of 

competing students and ( ) ( )i s kf s f s
  , 

 

k i k i k k
Prob(Y Y ) u ( f ( s )) u ( f ( s ))   . 

It is easy to see that Corollary 3.2 still holds. 

Proposition 4.1, which states a necessary condition for pre-BOS to implement stochastic ex-ante 

fairness cannot be extended, because the symmetric competition relationship that held before may 

not hold any more in the case of multiple school slots: Students who have competing relationship 

with each other but belong to the same ex-ante student group do not “compete” with each other 

anymore; yet students who have competing relationship with each other but do not belong to the 

same ex-ante student group still have “real” competing relationship. 

Non-Strict Student Preferences 

We now consider the case that students may have non-strict preferences over schools. We keep 

the assumption that each school still has one slot, and student still have homogeneous preferences. 

For example, students can all prefer 
jc  to 

1jc 
, but are indifferent between 

1jc 
 and 

2jc 
. 

This question can be translated into one with multiple school slots. We can redefine a set of 

schools which students think as indifferent as a new “aggregated” school. The difference from a 

multiple school slot question is, however, that an equilibrium implementing ex-ante fairness under 

pre-BOS with multiple school slots would correspond to an equilibrium here with an additional 
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requirement that all the students in the same ex-ante student group of that “aggregated” school must 

put different schools within this “aggregated” school as their first choices. So a coordination problem 

exists here, which makes the ex-ante fairness under any mechanism less likely.  

5.2 Some Degree of Heterogeneous Student Preferences 

Our benchmark model assumes that all the students have strict homogenous preferences over 

schools. In Section 5.1 we have relaxed this assumption a bit by allowing non-strict homogenous 

preferences. Here we consider another type of relaxation that students may have some degree of 

homogeneous preferences (and some degree of heterogeneous preferences) over schools.  

In particular, we partition all the N  schools into a number of school groups: 
1

B

mm
C C


  and 

m mC C   , m m   where 1 B N   and , 1, ,m m B  . We assume that all the students 

prefer 
jc  to 

jc   if 
j mc C , 

j mc C   and m m . That is, students have homogenous preference 

over school groups. For any two schools 
jc  and 

jc   within a specific school group, if there is a 

student who prefers 
jc  to 

jc  , there must be another student who prefers 
jc   to 

jc . In other words, 

our partition of schools is the finest partition of schools over which all the students have the same 

preferences. 

We can also define the corresponding ex-ante and ex-post student groups as a

mS  and p

mS , 

1, ,m B , with a bit of abuse of notations, such that for any student a

i ms S , we have ( )a

i mf s C , 

and for any student p

i ms S , we have ( , )p

i mf s Cy . Note that although students may have 

heterogeneous preferences on schools, since the acyclic assumption of school priority remains, each 

student still has a uniquely defined ex-ante and ex-post fair matched school. 

 Proposition 3.3 regarding the necessary condition for the pre-BOS mechanism to implement 

complete ex-ante fairness can be revised as the following: 

Proposition 5.4: The pre-BOS mechanism implements in its pure-strategy Nash equilibrium 

the completely ex-ante fair matching outcome only if every student except students in a

B
S  puts 

their ex-ante fair matched school as their first choice. 

The proof is very similar to that of Proposition 3.3, and thus we omit it here. 

Theorem 3.2, however, cannot be extended (at least not in a straightforward way) here. If it 

could be extended, Condition 1 would be stated as: “There is no competing relationship between any 

two students from different a

kS , 1, ,k B .” If possible, a plausible Condition 2 would be stated as: 

“There exist a subset of students  :1 #( )B

H a

kS s S k N S      with #( ) #( )B

H aS S , and for any 

H

ks S there exist a nonempty subset of students  : ( ) ( )H

k i i s kS s f s f s  , such that: (2.1) 

 ˆ, 1, ,i i N  , 
i

s  and 
î

s  are a pair of competing students if and only if  1, ,m B 

satisfying ˆ, a

mi i
s s S  or H

ks S  , H

i ks S   satisfying    ˆ, ,i i i k ; (2.2) H

ks S  , 

 ( ) ( ( )) (1 ( )) ( ) ( ( ))( )
H

i k

a a

k i k i k i k j k k
s S

Max Prob Y Y u f s Prob Y Y u c u f sk


       .” Here, for a weaker 
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version of (2.2) ( )jc k  is defined as ( ) ( )
B

j k
c C

c k argmin u c


  to consider the worst situation student 

ks  may have when he deviates from the required equilibrium strategy. If under this situation student 

ks  still has incentive to deviate, i.e., the inequality cannot hold, student 
ks  must deviate. For a 

stronger version of (2.2), we may redefine ( )jc k  as ( ) ( )
B

j k
c C

c k argmax u c


 . 

First, it is easy to find that either “pseudo-”Condition 1 or 2 is not sufficient to guarantee that 

pre-BOS implements ex-ante fairness in equilibrium. Because these conditions only guarantee that 

students have no incentive to deviate to schools in the other school groups. But students may still 

have incentive to deviate to a school within the same ex-ante school group. The following example 

illustrates this point. 

Example 4: All the set-ups are the same as in Example 1 except that the cardinal utilities of the 

students are modified as in the following table: 

 School c1 School c2 School c3 

Student s1-s2 100 35 25 

Student s3 35 100 25 

So all the schools can be partitioned into 2 school groups:  1 1 2,C c c  and  2 3C c . There 

are also no competing relationship between students ex-ante belonging to these two groups, i.e., 

between student  1 2,s s  and 3s . However, there is competing relationship between student 1s  and 

2s , both being ex-ante belonging to school group 1C . 

The Nash equilibrium under the pre-BOS mechanism is: Both students 1s  and 2s  listing 

school 1c  as their first choice and student 3s  listing 2c  as his first choice. The equilibrium 

matching outcome is not completely ex-ante fair.  

Second, these two conditions are also not necessary for the pre-BOS mechanism to implement 

ex-ante fairness in NE. Recall that in the necessity part of proof for Theorem 3.2, we have derived 

that if pre-BOS implements ex-ante fairness, the last student Ns  cannot have competing relationship 

with others. This result is then used to derive Condition 1 or 2. In particular, student Ns  can be 

“used” to deter another student attempting to deviate. However, a paralleled result, i.e., students 

ex-ante belonging to the last school group BC  cannot have competing relationship with students 

belonging to other groups, may not be necessary for the pre-BOS mechanism to implement ex-ante 

fairness here. Example 5 illustrates this point. 

Example 5: All the set-ups are the same as in Example 1 except that the cardinal utilities of the 

students are modified as in the following table: 

 School c1 School c2 School c3 

Student s1 100 25 67 

Student s2-s3 100 67 25 
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Now all the schools can be partitioned into 2 school groups:  1 1C c  and  2 2 3,C c c . One 

student ex-ante belonging to 2C , i.e., student 
2s , has competing relationship with student 1s , the 

student ex-ante belonging to 
1C . However, under the pre-BOS mechanism an equilibrium is: 

Student 1s  listing school 1c  as his first choice, and both students 
2s  and 

3s  listing school 
2c  as 

their first choice. Complete ex-ante fairness is achieved.  

In this example, a within-group competing relationship plays a role to deter the “stealing” 

behavior which may destroy ex-ante fairness. 

However, Proposition 3.4 regarding the constrained pre-BOS/SD mechanism can be extended 

here, as the following: 

Proposition 5.5: The constrained pre-BOS/SD mechanism (where each student can only apply 

for one school) implements in its pure-strategy Nash equilibrium ex-ante fair matching outcomes 

if and only if for any student 
k

s , for any student 
i

s  such that 
i

s  and 
k

s  are a pair of 

competing students and ( ) ( )i s kf s f s
  , 

 

k i k i k k
Prob(Y Y ) u ( f ( s )) u ( f ( s ))   . 

When we allow for some degree of heterogeneous preferences by the students, Corollary 3.2 

cannot be extended, simply because Theorem 3.2 cannot be extended. However, we can still 

conclude that constrained pre-BOS/SD mechanism is pretty much easy to achieve ex-ante fairness, as 

we have discussed in Section 3.3. 

6. Conclusions 

This paper introduces a new feature of mechanism design into the school choice literature: 

preference submission timing. We consider a problem where school priorities are solely determined 

by score rankings of students from an exam taken before admission. This feature is consistent with 

acyclic school priority in the literature. We compare two widely discussed and implemented 

matching procedures, the Boston and Serial Dictatorship mechanisms, interacted with two possible 

preference submission timings, i.e., preference submission before the exam score is realized, and 

preference submission after the exam score is realized and known.  

To compare various mechanisms, we focus on one particular welfare property: ex-ante fairness 

(or ability-based fairness). We consider two forms of ex-ante fairness: Complete ex-ante fairness 

requires that students with higher intrinsic abilities (thus high expected exam scores) are matched 

with commonly preferred schools with certainty; Stochastic ex-ante fairness requires that students 

with higher abilities have higher probabilities of being matched with commonly preferred schools.  

Among all the four mechanisms we study, i.e., pre-BOS (BOS with preference submission 

before exam), post-BOS (BOS with preference submission after exam), pre-SD (SD with preference 

submission before exam), and post-SD (SD with preference submission after exam), we find the 

following results. First, three mechanisms (post-BOS, pre-SD and post-SD) will implement the same 
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matching outcome in equilibrium, i.e., the stochastically ex-ante fair matching outcomes. The only 

difference among them is in students’ incentives to reveal their true preferences: Post-BOS is not a 

strategy-proof mechanism while the two SD mechanisms are. Second, pre-BOS is more likely to 

implement complete ex-ante fairness, especially when we limit the number of schools each student 

can list. However, pre-BOS is more “vulnerable” than other mechanisms in the sense that it will 

implement even non-stochastically ex-ante fair outcomes with positive probability.  

Our results lend some explanatory power to China’s college admissions system. The difference 

in results under the two different concepts of ex-ante fairness helps us to better understand why 

pre-BOS and other mechanisms coexist in the current college admissions system, in different 

provinces. In particular, pre-BOS is not as “bad” as perhaps originally thought, especially when we 

consider a constrained pre-BOS, which is the version of the mechanism that occurs in practice. 

Based on our study, the policy implications are the following: First, if the current system is a 

pre-SD, post-SD or post-BOS mechanism, the best way to improve ex-ante fairness is to enhance its 

examination system so that scores can become a better proxy for abilities.16 Second, if the current 

system is a pre-BOS mechanism, we may want to improve ex-ante fairness by imposing limits on the 

number of schools submitted by students in their application forms, or alternatively, increasing 

school slots or enlarging the sets of “equally preferred” schools to ease competition among students. 

However, we still need to be cautious of the possibility of “bad” results under this non-robust 

mechanism. 

Our results have heavily relied on one key assumption: All the students have the same 

preferences over schools. In our extensions, we relax this assumption by allowing some degree of 

preference heterogeneity. A future research direction would be to relax this assumption further, in an 

ideal case of no restriction on student preferences. Another research direction would be experimental 

and empirical tests on those mechanisms especially the constrained pre-BOS mechanism.17 By 

pursuing these two directions we may be able to find a better mechanism to implement ex-ante fair 

matching outcomes. Although our framework has assumed common knowledge of students’ abilities 

and score distributions, future work may consider the issues we discuss in this paper in a private 

information, Bayesian game framework. Our model has made a first attempt to model the 

relationship between students’ abilities and their score performances, by assuming an exogenous but 

stochastic relation between these two factors. Future work can pursue an endogenous relationship 

between ability and score, along the lines of Hafalir, Hakimov, Kubler and Kurino (2015). Finally, 

whether there exists a mechanism in which complete ex-ante fairness can be always implemented, is 

still an open question. 
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Appendix: Proofs 

Proof of Lemma 2.1 

We have the following two inequalities: 
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The two strict inequalities in the above two derivations come from the assumption of the first order 
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stochastic dominance among independent student score distributions.  

Proof of Lemma 2.2 

For any student pair is  and 
is  , i i  implies that ( )i   first order stochastically dominates 

(FOSD) ( )i    by Definition 2.1. By the definition of FOSD, ,min maxy y y    , ( ) ( )i iy y   , 

thus we must have inf inf

i iy y   and sup sup

i iy y  . Following the same analysis, i i i i      implies 
inf inf inf inf

i i i iy y y y      and sup sup sup sup

i i i iy y y y     . Since is  and 
is   are competing and i i , we 

have inf sup

i iy y  . By combining these two set of inequalities, we have: 

sup sup sup sup inf inf inf inf

i i i i i i i iy y y y y y y y            . 

Thus for any two students is   and is   with i i i i     , we have inf sup

i iy y  , which means that 

they are competing with each other.  

Proof of Proposition 3.1 

Since SD is a special case of the Top Trading cycles (TTC) mechanism, all the results regarding 

the TTC mechanism apply to SD mechanism. Our results can be derived from various theorems in 

Haeringer and Klijn (2009). Note also that post-BOS and post-SD are essentially the same as the 

classical BOS and SD mechanisms, with school priorities being the student realized score rankings. 

Since all the schools have homogeneous strict priorities, all the acyclic properties mentioned in 

Haeringer and Klijn (2009), (i.e., Ergin-acyclicity, Kesten-acyclicity, X-acyclicity, and strongly 

X-acyclicity) are satisfied. By their Theorem 7.3, the ex-post fair (or stable) matching is unique when 

priority structure is strongly X-acyclic. By their Theorem 7.2, TTC implements the stable matching 

outcome in NE when the priority structure is Kesten-acyclic. Since both acyclic properties are 

satisfied in our context, it is clear that TTC (SD) implements the unique ex-post fair matching 

outcome. 

By Proposition 6.1 in Haeringer and Klijn (2009), BOS implements fair matching outcome in 

NE, under any school priority structure. Together with the strong X-acyclicity assumption, BOS 

implements the unique fair matching outcome in NE. 

The strategy-proofness of the post-SD/TTC mechanism has been proved in Abdulkadiroglu and 

Sonmez (2003), as well as the non-strategy-proofness of the post-BOS mechanism.  

Proof of Proposition 3.2 

We first prove that the pre-SD mechanism is strategy-proof. As a well-known result, the standard 

(post-) SD mechanism is strategy-proof, i.e., the truth-telling strategy is the dominant strategy for all 

the students (Abdulkadiroglu and Sonmez, 2003). That is, for any realization of joint student score 

distribution  : 1, ,iy i N y , for any student is , for any strategy profile ( , )i i  , we must 
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have ( , | ) ( , | )
i

T

i i i i iu u    y y , where 
i

T  is student is 's truth telling strategy, 
i  is student 

is 's strategy, and i   is the vector for all other students’ strategies. Denote the joint score 

distribution function by ( )  , thus we can have, 

( , ) ( , | ) ( ) ( , | ) ( ) ( , )
i i

T T

i i i i i i i i i iEU u d u d EU               y y y y , ,i i  . 

Note that ( , )i i iEU    is exactly student is 's expected utility under the pre-SD mechanism 

when the strategy profile is ( , )i i 
. So the inequality above guarantees that truth-telling is an 

equilibrium strategy for any student is . 

   It is clear that if all the students play the truth-telling strategy, just as they are playing in the 

post-SD mechanism, the matching outcome must be the same, which is the unique ex-post fair 

matching outcome.  

Proof of Proposition 3.3 

The completely ex-ante fair matching outcome implies that student is  is matched to school ic , 

for any 1,...,i N . We want to prove that if the completely ex-ante fair matching outcome is 

implemented in NE under the pre-BOS mechanism, every student except student Ns  (the least able 

student) puts his ex-ante fair matching school as his first choice.  

Suppose instead that in the equilibrium where complete ex-ante fairness is achieved, there is one 

student is  with i N , who does not list his ex-ante fair matched school as his top choice. However, 

student is  must be matched with his unique ex-ante fair matched school, ic , in the equilibrium we 

assumed. This implies that student is  is admitted by school ic  through his non-top choice, which 

in turn implies that there must be an empty slot at school ic  after the first round admissions under 

the pre-BOS mechanism. 

Since i N , there must exist some student is   with i i N  , who prefers ic  to his ex-ante 

fair matched school ic  . Note also that in equilibrium student is   must be admitted by his ex-ante 

fair matched school ic  . However, suppose now student is   submits ic  as his top choice, then he 

will surely be admitted by ic . Thus we find a profitable deviation for student is  , which invalidates 

the assumed equilibrium.  

Proof of Corollary 3.1 (of Proposition 3.3) 

Consider a student is  with i N who is playing a mixed-strategy under NE. Due to the 

uniqueness of completely ex-ante fair matching outcome, he must be admitted by school ic  for sure. 

Suppose that in the support set for his mixed strategies, there is at least one pure strategy where he 

does not put school ic  as his first choice. 
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Since the equilibrium outcome is completely ex-ante fair, there should be no other students who 

list school ic  as their first choices in their mixed strategies. Otherwise student is  would not be 

admitted by school ic  for sure. Now consider student Ns . In the equilibrium we assumed, Ns  

must be matched with school Nc . However, if he deviates from his equilibrium strategy to a strategy 

where he lists school ic  as his first choice, he will have positive probability of being admitted by 

ic . Since Nc  is the last-ranked school, he must be better off through such a deviation. This again 

invalidates the assumed equilibrium.  

Proof of Proposition 3.4 

Sufficiency. Suppose that 1, ,k N  , i k   such that is  and ks  are a pair of competing 

students, we have   ( ) ( )k i k i k kProb Y Y u c u c   . Obviously, 1, ,k N  , i k   such that is  and 

ks  are not a pair of competing students, we have   ( ) 0 ( ) 0 ( )k i k i k i k kProb Y Y u c u c u c      . In the 

case i k , we also have   ( ) ( ) ( )k i k i k i k kProb Y Y u c u c u c    . Combining all these three cases, the 

following condition holds for any 1, ,k N : 

i k  ,   ( ) ( )k i k i k kProb Y Y u c u c   , or   ( ) ( )k i k i k k
i k

Max Prob Y Y u c u c


   . 

We want to prove that if the above condition holds, the strategy profile where all the students list 

their ex-ante fair matched schools as their choices forms a Nash equilibrium. 

Consider student ks . Given that all other students list their ex-ante fair matched schools as their 

choices, if ks  deviates from that strategy, he will either be admitted by the school he lists as his 

(only) choice, or not be admitted at all ending up with a payoff of zero. Thus through deviation the 

highest payoff he can have is   ( )k i k i
i k

Max Prob Y Y u c


  . If ks  sticks to strategy of listing his 

ex-ante fair matched school, his payoff is ( )k ku c . By the condition above, ks  has no incentive to 

deviate at all. 

Necessity. If the constrained pre-BOS/SD mechanism (where each student can only apply for 

one school) implements in its pure-strategy Nash equilibrium the completely ex-ante fair matching 

outcome, it can be easily shown that in equilibrium each student (including Ns ) must list his ex-ante 

fair matched school as his (only) choice. In order to guarantee that no student has incentive to list 

any school rather than his ex-ante fair matched school, the following condition must hold: 

1, ,k N  , i k  ,   ( ) ( )k i k i k kProb Y Y u c u c   . 

In particular, the condition above must hold in the case that i k  and is  and ks  are a pair of 

competing students.  
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Proof of Theorem 4.1 

Denote the score rank cumulative distribution function (CDF) of student is  by ( )i  , we have 

 ( )i ik Prob R k   , 1, ,k N  . We first prove the following lemma.  

Lemma A.1: If students’ score distribution functions satisfy first-order stochastic dominance 

relationship, then their score rank distribution functions satisfy the (reversed) first-order 

stochastic dominance relationship. That is,  i ,i 1, ...,N ,i i    , if (i) min max
y y , y    , 

 
i i
( y ) ( y ) and (ii) min max

y y , y       such that  
i i
( y ) ( y )
  , then (iii)  k 1, , N  , 

 
i i
( k ) ( k ) and (iv)  k 1, ,N   such that  

i i
( k ) ( k )
  . 

Proof:  

To simplify our proof, here we further assume that for all students, the score distribution 

function, ( )i  , is non-atomic and differentiable within its support ( ) ,inf sup

i i isupp y y     . Let 

( )i   be its probability density function. That is, ( ) 0i y   for any ( )iy supp  . First notice that: 

  ( , ) ( )

max

min

y

i i i

y

Prob R k k y y dy   , 

where ( , )i k y  is the probability that at most 1k   students in  : 1,..., ,i jS s j N j i     have 

scores higher than y . Note that in the above equality ( ) 0i y   for any ( )iy supp  . 

Consider two students is  and is  , i i . We want to show the following results step by step. 

Step 1.  
i i
( k , y ) ( k , y ) ,  k 1, , N  , min max

y y , y    . 

We first introduce some notations. For  1, ,k N , let ( 1, ( , ), )E k i i y   denote the event 

that at most 1k   students in  ( , ) : 1,..., , ,i i jS s j N j i j i
     have scores higher than y , and 

( 2, ( , ), )E k i i y   the event that at most 2k   students in 
( , )i iS 

 have scores higher than y . 

Obviously, we have    ( 1, ( , ), ) ( 2, ( , ), ) 1Prob E N i i y Prob E N i i y       . For convenience, 
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assume ( 1, ( , ), )E i i y    such that  ( 1, ( , ), ) 0Prob E i i y   . 

Let ( , )E i y  denote the event that student is  has a score higher than y , and ( , )E i y  the 

event that student is   has a score higher than y . Let ( , )E i y  denote the event that student is  has 

a score not higher than y , and ( , )E i y   the event that student is   has a score not higher than y . 

Now we can express ( , )i k y  as the following: 

       

   

( , ) ( 1, ( , ), ) ( , ) ( 2, ( , ), ) ( , )

( 1, ( , ), ) ( ) ( 2, ( , ), ) (1 ( ))

i

i i

k y Prob E k i i y Prob E i y Prob E k i i y Prob E i y

Prob E k i i y y Prob E k i i y y  

            

         
. 

It is easy to check that the above equality also holds if 1k   by our assumption. 

Similarly, we have 

   ( , ) ( 1, ( , ), ) ( ) ( 2, ( , ), ) (1 ( ))i i ik y Prob E k i i y y Prob E k i i y y 
           . 

Based on these two expressions, we can have 

   ( , ) ( , ) ( 1, ( , ), ) ( 2, ( , ), ) ( ( ) ( ))i i i ik y k y Prob E k i i y Prob E k i i y y y  
             . 

( 2, ( , ), ) ( 1, ( , ), )E k i i y E k i i y       implies    ( 1, ( , ), ) ( 2, ( , ), )Prob E k i i y Prob E k i i y      , 

 1, ,k N  , ,
min max

y y y     . By the FOSD assumption, ( ) ( )i iy y    ,min maxy y y    . 

Therefore, we have ( , ) ( , )i ik y k y   ,  1, ,k N  , ,min maxy y y    . 

Step 2.   

max max

min min

y y

i i i i

y y

( k , y ) ( y )dy ( k , y ) ( y )dy  ,  k 1, , N  , min max
y y , y    . 

First, note that by definition ( , )i k y  is a non-decreasing function of y . That is, 

( , )
0i k y

y





,  ,min maxy y y    . 

Second, through integration by parts, we have 
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( , )
( , ) ( ) ( , ) ( ) ( , ) ( ) ( )

( , )
( , ) ( )

supmax max
i

sup
i

inf
i

min min inf
i

sup
i

inf
i

yy y
y y i

i i i i i i iy y

y y y

y

sup i
i i i

y

k y
k y y dy k y d y k y y y d y

y

k y
k y y d y

y

   








     




  



  



       (1) 

Similarly, we have 

( , )
( , ) ( ) ( , ) ( )

supmax
i

min inf
i

yy

sup i
i i i i i

y y

k y
k y y dy k y y d y

y
 





  


   

                               (2) 

Since ( ) ( )i iy y    ,min maxy y y    , we have sup sup

i iy y  , which implies that the first term 

of equation (1) is no less than the first term of equation (2), since ( , )i k y  is non-decreasing in y . 

Since 
( , )

0i k y

y





 and ( ) ( )i iy y    ,min maxy y y    , the second term (the integration part) of 

equation (1) is no larger than the second term of equation (2). Combining two observations together, 

we have the result:  

( , ) ( ) ( , ) ( )

max max

min min

y y

i i i i

y y

k y y dy k y y dy      ,  1, ,k N  , ,min maxy y y    . 

Step 3.  k 1, , N  ,  
i i
( k ) ( k ) . 

   ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( )

max max max

min min min

y y y

i i i i i i i i i i

y y y

k Prob R k k y y dy k y y dy k y y dy Prob R k k                     . 

The first inequality comes from Step 2 and the second inequality comes from Step 1. 

Step 4.  k 1, , N   such that  
i i
( k ) ( k )
  . 

We consider two cases. 

Case 1. Students is  and is   have no competing relationship.  

In this case it is obvious that there exists some  1, ,k N  such that ( ) 0 ( )i ik k  
   . 

Case 2. Students is  and is   have competing relationship.  

According to Lemma 2.2, there must be some i  and i , satisfying 1 i i i i N       , 
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such that all the students indexed from i  to i  have competing relationship with each other but 

all the other students (if exist) do not have competing relationship with all of them. Denote such a 

student set indexed from i  to i  by S  , where  :jS s i j i     . It is obvious that for any 

student 
js S , their rankings in the whole set of students S  only depend on their rankings within 

S  . We denote the number of students in S   by N  , where #( )N S  . Let ( , )j jR R s S   and 

( )j jk Prob R k      , for any 
js S , and for any  1, ,k N .  

In Case 2, it suffices for us to show that for any two students is  and is   in S   with i i , 

there exists some  1, ,k N   such that ( ) ( )i ik k  
    . Note that this is almost the same 

problem as the original one, except that now all the students have competing relationship with each 

other. With a bit of abuse of notations, we keep the same notations as in the original problem if not 

specified. 

By following our previous proof process, Note that it suffices to prove the following statement: 

( , )inf sup

i iy y y   ,  1, , 1k N   , such that ( , ) ( , )i ik y k y   . This will guarantee that the 

second inequality in Step 3 would be strict. 

Since     ( , ) ( , ) ( 1, ( , ), ) ( 2, ( , ), ) ( ( ) ( ))
i i i i

k y k y Prob E k i i y Prob E k i i y y y  
           , we 

would like to show that for some y  such that ( , )inf sup

i iy y y   and ( ) ( )i iy y   , we have: 

   ( 1, ( , ), ) ( 2, ( , ), ) 0Prob E k i i y Prob E k i i y       , for some k ,  1, , 1k N  . 

Let ( 1, ( , ), )E k i i y    denote the event that exactly 1k   students in 
( , )i iS 

 have scores 

higher than y , thus we have      ( 1, ( , ), ) ( 2, ( , ), ) ( 1, ( , ), )Prob E k i i y Prob E k i i y Prob E k i i y           . 

Note that if for some ( , )inf sup

i iy y y  , ( ) ( )i iy y   , then there must exist some y  such that  

min inf inf sup sup max

i i i iy y y y y y y 
      , and ( ) ( )i iy y 

  . This is because ( )i    and ( )i   are 

differentiable, and ( ), ( ) 0i i      within their respective supports. So it suffices to prove the 

following statement:  

Statement (A1): for any y  such that inf sup

i iy y y   , we have: 
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( 1, ( , ), ) 0Prob E k i i y       for some k ,  1, , 1k N  . 

We prove the above statement by considering three subcases 2.1-2.3. 

Case 2.1. 2N  . That is,  ,i iS s s 
  . In this case we have 1 0(0, ( , ), )Prob E i i y      . 

So for any ( , )inf sup

i iy y y  , Statement (A1) holds for 1k  . 

Case 2.2. 2N   and i i , that is, student is  is the student with the highest ability in S  . 

We would like to show that ( , )inf sup

i iy y y   , 0(0, ( , ), )Prob E i i y      must hold; In other 

words, Statement (A1) holds for 1k   and for any ( , )inf sup

i iy y y  . 

To see this, denote all the students in S   except is  and is   by a set 

 *

* * *

( , ) : , ,i i i
S s i i i i i i i
        . By FOSD and the definition of competing relationship 

(Definition 2.2’), we have * *

inf inf sup sup

i ii i
y y y y   , for any * ( , )i ii

s S 
 . Then for any y  such that 

inf sup

i iy y y   , we also have *

inf

i
y y . This implies that ( , )inf sup

i iy y y   , * ( , )i ii
s S 

  , we have 

* 0
i

Prob Y y    . For example, each student *i
s  has a score *i

y  (and indeed a score range) such 

that * *

inf

i i
y y y  . Therefore, we have 0(0, ( , ), )Prob E i i y     . 

Case 2.3. 2N   and i i , that is, there is at least one student who has a higher ability than 

is  in S  . Suppose there are m  such students, where 1 2m N   . Denote all those students by a 

set  ˆ
ˆ ˆ: , ,i i

S s i i i i i
      . By FOSD and the definition of competing relationship (Definition 

2.2’), we have ˆ ˆ

inf inf inf sup sup sup

i i i ii i
y y y y y y      , for any ˆ ii

s S
 .  

It can be shown that it is possible to have ( 1, ( , ), ) 0Prob E k i i y       for any  1, ,k m  

and some ( , )inf sup

i iy y y  : For ˆ( , )inf inf

i i
y y y , for any student ˆ ii

s S
 , we have ˆ 1

i
Prob Y y    . 

So the number of students having score larger than y cannot be less than m  . 

However, for 1k m   and for any ( , )inf sup

i iy y y  , ( 1, ( , ), ) 0Prob E k i i y       must hold. 

To see this, note first that if every student ˆ ii
s S

  has a score ˆ ( , )sup

ii
y y y  , which is possible, then 
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all the m  students in iS
  have scores larger than y; To put it formally, ( , )inf sup

i iy y y   , 

ˆ ii
s S

  ,we have 
ˆ 0
i

Prob Y y    . Second, based on the analysis in Case 2.2, for any student 

except is   who has a lower ability than is , it is possible that none of them has a score larger than y ; 

To put it formally, ( , )inf sup

i iy y y   , 
( , )i i ii

s S S 
    , we have 0

i
Prob Y y    .  Combining the 

above two facts, we have ( , ( , ), ) 0Prob E m i i y     . Thus Statement (A1) holds for 

 1 1, , 1k m N     and for any ( , )inf sup

i iy y y  .  

After proving Lemma A.1, it is straightforward to prove Theorem 4.1. 

Proof of Theorem 4.1 (with Lemma A.1)  

Let 
ijl  denote the probability of student is  being ranked the j th by his realized score among 

all the students (i.e., iR j ). By Propositions 3.1. and 3.2, all the three mechanisms (pre-SD, 

post-SD, and post-BOS) will always implement ex-post fairness. Therefore, 
ij ijp l , 

 , 1, ,i j N  . Recall that 
ijp  is the probability of student is  being matched with school 

jc . 

By Lemma A.1, for any pair of students is  and is   with i i , we have  1, ,k N  , 

1 1

( ) ( )
k k

ij i i i j

j j

l k k l   

 

     and  1, ,k N   such that 
1 1

( ) ( )
k k

ij i i i j

j j

l k k l 
 

 

 

     . Since 

 , 1, ,i j N  , 
ij ijp l , we have the following result: for any pair of students is  and is   with 

i i , (i)  1, ,k N  , 
1 1

k k

ij i jj j
p p  

   and (ii)  1, ,k N   such that 
1 1

k k

ij i jj j
p p

 

 
  . 

By Definition 2.5’, this matching outcome is stochastically ex-ante fair.  

Proof of Proposition 4.1 

We prove by contraposition. That is, under the n-degree ( 1n  ) competing relationship, 

pre-BOS will not implement stochastic ex-ante fairness in its weakly-dominant pure-strategy NE if 

( 1)

2

n n
N


 . Our proof will focus on student’s first choices. We will find conditions under which 

students’ first choices in a weakly dominant pure-strategy NE will surely lead to the violation of 

stochastic ex-ante fairness. Let ( )c ij s  be the index of the school that student is  lists as his first 
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choice, where  ( ) 1, ,c ij s N ,  1, ,i N  . 

We first prove the following 4 lemmas. 

Lemma A.2: In a weakly dominant pure-strategy NE where stochastic ex-ante fairness is 

achieved, students’ first choices must be monotonic. Specifically, (i) 
c 1

j ( s ) 1 , (ii) 

c i 1 c i
0 j ( s ) j ( s ) 1


   ,  i 1, , N  . 

Proof: 

(i) Suppose 1( ) 1cj s  . Then in a weakly dominant pure-strategy NE, there must be another student 

is  with 1i   such that ( ) 1c ij s  , and 1 0ip  . ( ) 1c ij s   and 1( ) 1cj s   imply 11 0p   by the 

matching rules of the pre-BOS mechanism. Since 1 11ip p  and 1i  , stochastic ex-ante fairness is 

violated. 

(ii) For 1, ,i N , consider the very first i  violating the condition 10 ( ) ( ) 1c i c ij s j s   . 

Suppose that the violation is 1( ) ( ) 0c i c ij s j s   . Obviously 2i  . Since for all i i  , we have 

10 ( ) ( ) 1c i c ij s j s     and 1( ) 1cj s  , for any school 
jc  with ( )c ij j s , there must be a student 

is   such that ( )c ij s j  . ( )c ij s j   and ( )c ij s j  imply 0ijp  . Therefore, we have 

( )

0
c i

ij

j j s

p


 . It is also known that in a weakly dominant pure-strategy Nash equilibrium, 

11, ( ) 0
c ii j sp

  . However, 1( ) ( ) 0c i c ij s j s    and 
11, ( ) 0

c ii j sp
   imply 1,

( ) ( )

0
c i c i

i j ij

j j s j j s

p p

 

   , 

violating stochastic ex-ante fairness. 

Suppose instead that the violation is 1( ) ( ) 1c i c ij s j s   . Case (1): 1i N  . Then in a weakly 

dominant pure-strategy equilibrium there is a student is   with 1i i    such that ( ) ( ) 1c i c ij s j s    

and 
, ( ) 1 0

c ii j sp    . Thus 
( ) 1

0
c i

i j

j j s

p 

 

 . However, 1,

( ) 1

0
c i

i j

j j s

p 

 

 . This results in the violation of 

stochastic ex-ante fairness. Case (2): 1i N  . Then student 1is  will be better off by listing his first 

choice as ( ) 1c ij s   instead of 1( )c ij s  . 

Lemma A.3. If the degree of competition is n (n 1 ), then there are at most n  consecutively 
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indexed students whose first choice is the same school in the weakly dominant NE, if this school is 

not 
N

c  or 
N 1

c  . 

Proof: 

Suppose there are 1n  students 1, , ,i i i ns s s   who choose school 
jc  with 1 2j N    as 

their first choice. Obviously 
, 0i n jp   . So in a weakly dominant NE, i ns   should choose another 

school 
jc   with 1j j N   , as his first choice. By Lemma A.2, those schools in 

 : 1jc j j N
    are the only schools that have not been chosen as the first choices of the 

students who have higher abilities than i ns  . i ns   will (weakly) benefit from this change. 

Lemma A.4. For any m n  consecutively indexed students whose first choice is the same 

school (not 
N

c  or 
N 1

c  ), if there exists some student indexed after them listing a different school 

as his first choice, there exist at least m+1 such students who are consecutively indexed and list 

that school as their first choice, to make stochastic ex-ante fairness possible. 

Proof: 

Consider m  consecutively indexed students whose first choice is the same school (not Nc  or 

1Nc  ). Denote the set of these students by  1 1, , ,i i i ms s s   , and their first choice by 
jc   where 

1j N   . By Lemma 2.1, for student 1i ms   , we have 
1,

1
i m jp

m
   . By Lemma A.2, if stochastic 

ex-ante fairness is achieved, we have 
1, 1,

1
i m j i m j

j j

p p
m

   


  . 

Consider the students indexed just after those m  students. Suppose there are m  

consecutively indexed students who have the same first choice, where 1m  . Denote the set by 

 1 1, , ,i m i m i m ms s s       . By Lemma A.2, if stochastic ex-ante fairness is achieved, their first choice 

must be 
1jc 

. Consider student i ms  . By Lemma 2.1, we have 
, 1

1
i m jp

m
  


 and 

, , 1

1

1
i m j i m j

j j

p p
m

  
 

 


 . Note that since 
1, 1 0i m jp     , then 

1, 1,

1

1
i m j i m j

j j j j

p p
m

   
   

   . If 

m m  , then 
, 1,

1 1

1 1
i m j i m j

j j j j

p p
m m

  
    

  


  , in which case stochastic ex-ante fairness is 
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violated. Therefore, in order to guarantee stochastic ex-ante fairness, we must have 1m m   . 

Lemma A.5. In a weakly dominant pure-strategy NE achieving stochastic ex-ante fairness, 

there cannot be 3 consecutively indexed students who list different schools from each other as 

their first choices. 

Proof: 

Suppose that there are 3 students 1 2, ,i i is s s   who list different schools as their first choices, 

say 
1 2, ,j j jc c c 

 (by Lemma A.2). Then by Lemma A.2, for any student is   with 1i i   , we must 

have ( ) 1c ij s j   . Also, there will be no students who list 
1jc 
 as their second choice in weakly 

dominant equilibrium, since 
1jc 
 has been taken in the first round by student 1is   (or, with others). 

In this case student 1is   will have incentive to deviate by listing 
jc  as his first choice and 

1jc 
 as 

his second choice. Obviously 1is   can be better off by such a deviation. 

Proof of Proposition 4.1 (with Lemmas A.2-A.5)  

From Lemmas A.2-A.5, it is obvious that for competition degree 1n  , in stochastically 

ex-ante fair weakly dominant pure-strategy NE, the longest possible sequence of students with their 

first choices not violating stochastic ex-ante fairness would be as follows: 

Student 1s  (one student) chooses 1c  as his first choice. 

Students 2s  and 3s  (two students) choose 2c  as their first choice. 

Students 4s , 5s  and 6s  (three students) choose 3c  as their first choice. 

…… 

Students 1 1

1 1
1

, ,n n

k k
k n k

s s 

 
  

, (n students) choose nc  as their first choice. 

These are in total 
1

1 1

( 1)

2

n n

k k

n n
n k k N



 


      students. Note that for 2n  , we have 

N n , so nc  is a non-weakly dominated first choice for students. If there is one more (or further 

more) student, stochastic ex-ante fairness cannot be reached under the weakly dominant 

pure-strategy NE. 

It is worth mentioning that if there are less students, we can always find a sequence of students 

with their first choices not violating the stochastic ex-ante fairness. To see this, denote the above 
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longest list of student by S , with a length of N , and a corresponding first choice list as 
FC . 

Consider a student list S   with a length ofN m , where 1 m N  . We construct a first choice 

list (say, FC ) to S   as below: (i) We delete the first m  choices from 
FC . (ii) In the remaining list, 

for any school indexed by j , we replace them with some single index j’. (iii) The new index is 

consecutive from 1 to n j , for some 1 j n  . (For example, a first choice list (1,2,2,3,3,3)  is 

the longest possible list not violating stochastic ex-ante fairness, with 6 students, if 3n  . If we have 

only 5 students, we can construct a new first choice list (1,1,2,2,2)  for them, which does not violate 

stochastic ex-ante fairness.  


